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Phase diagram of the two-dimensionalÁJ Ising spin glass

Fernando D. Nobre*
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The 6J Ising spin glass@probabilitiesp and (12p) associated with ferromagnetic and antiferromagnetic
couplings, respectively# is studied by applying a real-space renormalization-group technique on a hierarchical
lattice that approaches the square lattice. Within such a procedure, there is no spin-glass phase and only two
finite-temperature phases are found, namely, the paramagnetic and ferromagnetic ones. In spite of a reasonably
small computational effort, an accurate paramagnetic-ferromagnetic boundary is presented: the estimate for the
slope atp51 is in very good agreement with the well-known exact result, whereas the coordinates of the
Nishimori point are determined within a high precision. Below the Nishimori point, such a boundary is not
strictly vertical—contrary to the usual belief—in such a way that a small reentrance is found at low tempera-
tures.
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I. INTRODUCTION

In spite of a large effort dedicated to the spin-glass~SG!
problem @1–3#, it still remains as a great challenge in th
physics of disordered magnets. Some points are curre
accepted as satisfactorily understood; for example, diffe
numerical approaches@4–14#, suggest that the neares
neighbor-interaction Ising SG on a cubic lattice present
phase transition at finite temperatures. Although some wo
claim a possible phase transition at finite temperatu
@15,16#, the majority of the investigations carried out for th
same model on a square lattice@4,9–11,14,17–24,26–30# do
not find evidence of a SG phase at finite temperatures. E
though the Ising SG on a square lattice may seem a tri
problem ~due to the absence of a finite-temperature
phase!, it has attracted the attention of many workers
cently, either for its chaotic behavior@22,23# or for its critical
behavior at zero-temperature@14,17–20,24,28,30# or along
the paramagnetic-ferromagnetic frontier@21,24–27,29#.

In the case of a6J Ising spin glass, with probabilitiesp
and (12p) associated with ferromagnetic and antiferroma
netic couplings, respectively, there exists a line along wh
the internal energy can be calculated exactly; the so-ca
Nishimori line @31,32# is defined in the plane temperatureT
vs probabilityp as

exp~2J/kBT!5
p

p21
. ~1!

The intersection of the Nishimori line with the border of th
ferromagnetic phase is called the Nishimori point@coodi-
nates (pN ,TN)#; for sufficiently high dimensions, in such
way that a SG phase exists at finite temperatures, it has
proposed that the Nishimori point should coincide with t
multicritical point where all phases of the model me
@25,33#. In the two-dimensional case, even though the
phase is absent, the Nishimori point is expected to coinc
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with a critical point, unstable along the phase bounda
which is probably the simplest critical point appearing in
two-dimensional system at both finite temperature and fin
disorder strength@25#. One of the results due to Nishimori i
that if one considers a given value ofp satisfying Eq.~1!,
corresponding to a point inside the paramagnetic phase,
the ferromagnetic order parameter should vanish for all te
peratures. Such a result implies that, below the Nishim
point, the border of the ferromagnetic line should be eith
vertical ~parallel to the temperature axis!, or should bend
towards higher values ofp. If one definespc as the value at
which such a critical frontier meets the zero-temperat
axis, then one should havepc>pN . If the inequality holds,
then one should have a reentrance within a given rang
values ofp: for the two-dimensional case, by lowering th
temperature, one should go from a paramagnetic state
ferromagnetic one and then back to a paramagnetic ph
However, for sufficiently high dimensions, one comes into
SG phase~which presents a higher entropy as compared w
the ferromagnetic one! at low temperatures; the terminolog
reentrance has been also used in such a case, even th
being not accurate, since one does not come back to the s
phase by lowering the temperature.

Even though there are some theoretical arguments@34# in
favor of the so-calledno-reentrance hypothesis~supporting a
vertical straight line below the Nishimori point, i.e.,pc
5pN!, there appears to be no fundamental reason why re
trances should be ruled out of thermodynamic systems@35#.
Although some numerical investigations@29,36–39# were
not able to detect a reentrance in the two-dimensional6J
Ising spin glass, the possibility of small deviations betwe
pc and pN should not be discarded. The most recent fini
temperature numerical approaches yield estimates of
Nishimori point that are very close to one another, e.g.,
ries expansions@21# @pN50.886(3)#, Monte Carlo analysis
of nonequilibrium relaxation@27# @pN50.8872(8)#, and nu-
merical transfer matrix@29# @pN50.8905(5)#. However,
such estimates forpN are slightly smaller than those ofpc
obtained through a recent finite-size scaling analysis of ex
ground states @24#, which find pc50.896(1) or pc
©2001 The American Physical Society08-1



he
-

.

,
a
hi
ec
ec

th

in
(
o

1
r

r
em

etic
tice

lat-
iso-
and
-
d

rks
, it
in,

ies,
e

ies
each

al

s

FERNANDO D. NOBRE PHYSICAL REVIEW E64 046108
50.894(2), depending on the type of scaling employed. T
above results suggestpc.pN , leading to a possible break
down of the no-reentrance hypothesis.

In the present work we consider the6J Ising spin glass
on a hierarchical lattice that approaches the square lattice
applying a renormalization-group approach, we are able
increase the accuracy, with respect to the previous works
the estimation of the critical points. A precise phase diagr
is presented; in particular, it is shown that below the Nis
mori point the phase boundary is not strictly vertical. In S
II we define the model and the numerical formalism; in S
III we present and discuss our results.

II. THE MODEL AND THE NUMERICAL PROCEDURE

Let us consider the Ising spin glass defined in terms of
Hamiltonian,

H52(̂
i j &

Ji j SiSj ~Si561!, ~2!

where the coupling constants$Ji j % are quenched random
variables following the bimodal~or 6J! probability distribu-
tion,

P~Ji j !5pd~Ji j 2J!1~12p!d~Ji j 1J!. ~3!

The sumS^ i j & is restricted to nearest-neighbor pairs of sp
on a hierarchical lattice generated in such a way that then
11)th hierarchy is obtained by replacing each single bond
the nth hierarchy by a cell like the one exhibited in Fig.
@40#; such an operation corresponds to a scaling factob
53. The fractal dimension of the cell in Fig. 1 isD
5 ln 9/ ln 352. Under a renormalization-group~RG! transfor-
mation, this cell preserves antiferromagnetism and rep
duces several well-known exact results, e.g., the critical t

FIG. 1. The basic cell of the hierarchical lattice with fract
dimensionD52. The solid circles denote the internal sites~to be
decimated in the renormalization process!, whereas the open one
represent the external sites~connected to other cells of the lattice!.
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peratures of both pure ferromagnetic and antiferromagn
Ising models on a square lattice. Such a hierarchical lat
has been employed successfully to approach the square
tice with a large variety of physical systems, such as an
tropic bond percolation, anisotropic Potts ferromagnets,
Ising antiferromagnets@40–44#. Therefore, the model de
fined through Eq.~1!, on the hierarchical lattice define
above, is expected to be a good approximation of the6J
Ising SG on a square lattice.

The RG procedure may now be carried; as usual, it wo
inversely to the generation of the hierarchical lattice, i.e.
transforms the cells in Fig. 1 into elementary bonds. Here
we shall work with the dimensionless exchange energ
Ki j [Ji j /kBT; the recursion relation involving the effectiv
exchange energyKi j8 and the set of original couplings$Klm%
of a basic cell is given by

Ki j8 5
1

2
lnF( i 51

16 exp~Ai !

( i 51
16 exp~Bi !

G , ~4!

where

A15Ki31K311K̃ i21K121K̃1 j1K241K4 j ,

A252Ki32K311K̃ i21K121K̃1 j1K241K4 j ,

A35Ki31K311K̃ i21K121K̃1 j2K242K4 j ,

A45Ki32K311K̃ i22K122K̃1 j1K241K4 j ,

A55Ki31K312K̃ i22K121K̃1 j2K241K4 j ,

A652Ki32K311K̃ i21K121K̃1 j2K242K4 j ,

A752Ki31K311K̃ i22K122K̃1 j1K241K4 j ,

A852Ki32K312K̃ i22K121K̃1 j2K241K4 j ,

A95Ki32K311K̃ i22K122K̃1 j2K242K4 j ,

A105Ki31K312K̃ i22K121K̃1 j1K242K4 j ,

A115Ki32K312K̃ i21K122K̃1 j2K241K4 j ,

A125Ki32K312K̃ i21K122K̃1 j1K242K4 j ,

A1352Ki31K312K̃ i21K122K̃1 j2K241K4 j ,

A1452Ki32K312K̃ i22K121K̃1 j1K242K4 j ,

A1552Ki31K311K̃ i22K122K̃1 j2K242K4 j ,

A1652Ki31K312K̃ i21K122K̃1 j1K242K4 j ,

with K̃ i2 and K̃1 j representing effective exchange energ
~i.e., the sum of the exchange energies associated with
of the two parallel paths connecting sitesi to 2 and 1 toj,
8-2
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PHASE DIAGRAM OF THE TWO-DIMENSIONAL6J ISING SPIN GLASS PHYSICAL REVIEW E 64 046108
respectively!. The Bi ’s ( i 51,...,16) may be obtained from
the respectiveAi ’s by inverting the signs precedingK̃1 j and
K4 j .

At zero temperature, the recursion relation involves
effective couplingJi j8 and the set of original couplings$Jlm%
in such a way that

Ji j8 5 1
2 ~Cmax2Dmax!, ~5!

where

Cmax5max~C1 ,C2 ,...,C16!,

Dmax5max~D1 ,D2 ,...,D16!,

Ci5 lim
T→0

kBT~Ai !; Di5 lim
T→0

kBT~Bi !; ~ i 51,...,16!.

~6!

In order to find the phases of the model, one should foll
numerically the probability distribution associated with t
exchange energies@4#. Such a probability distribution is
mimicked by a set ofM real numbers$Kl

(n)%, from which
one may compute at each iteration stepn,

sm
~n!5

1

M (
l 51

M

~Kl
~n!!m ~m51,2,...!, ~7!

which are expected to approach, in the limitM→`, the
moments of the distributionP(Ki j ). In order to reduce the
dependence ofsm

(n) in the particular sequence of rando
numbers, such quantities were computed, for each RG s
over Ns different samples~different sequences of random
numbers!, after which, the averages over samples were c
sidered,@sm

(n)#av .
For given values of temperatureT and probabilityp, the

RG process starts by creating an initial pool withM real
numbers$Kl

(0)% produced according to a bimodal probabili
distribution similar to the one in Eq.~3!. An iteration con-
sists inM operations, where in each of them one picks ra
domly nine numbers from the pool~each chosen number i
assigned to a bond in the cell of Fig. 1! in order to generate
the corresponding effective coupling according to Eq.~4!.
After that, one gets a new pool representing the renormal
probability distribution, from which one may compute th
moments in Eq.~7!. Such moments are stored for each ite
tion stepn, and each individual sample, in such a way th
@sm

(n)#av may be calculated.
It should be mentioned that the bimodal distribution p

sents a rapid proliferation of delta functions under the R
process@14#; inside the paramagnetic phase, the delta fu
tion at Ki j 50 ~which usually appears throughout the R
procedure! increases its weight after each renormalizatio
whereas inside the ferromagnetic phase the deltas co
sponding toKi j .0 increase their weight under the RG pr
cess. The SG phase is usually associated with a decrea
the weight of the delta at the origin, whereas the deltas
both positive and negativeKi j predominate. Therefore, unde
the RG process the averaged moments@sm

(n)#av should ap-
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proach, for increasing values ofn, @sm
(n)#av→0 in the para-

magnetic phase,@sm
(n)#av→` in the ferromagnetic phase

whereas@sm
(n)#av→0 ~m odd! and @sm

(n)#av→` ~m even! in
the SG phase.

For a more reliable identification of a given phase boun
ary, one should also monitor the square-root deviations a
ciated with each@sm

(n)#av ~herein denoted bydm
(n)!; large val-

ues ofdm
(n) may be an indication that only a small number

samples are contributing significantly to the sample aver
in @sm

(n)#av . As an example, we show in Fig. 2 a typical case,
with the sample-to-sample fluctuations ofs1

(20) for the
present model, in the neighborhood of the critical front
paramagnetic/ferromagnetic~p50.98; kBT/J52.1175!. For
the particular case exhibited in Fig. 2, the fact that@sm

(n)#av
increase under successive RG iterations is due to a con
gence to the ferromagnetic attractor of a small fraction
samples; the great majority of samples~nearly 80%! present
the momentssm

(n) of Eq. ~7! with a convergence to a para
magnetic attractor. In cases like that, the corresponding p
under study will, herein, be considered inside the param
netic phase, instead of in the ferromagnetic one.

III. RESULTS AND DISCUSSION

We have considered pools of sizeM5800 000 and our
simulations were repeated forNs5400 samples. Within the
present numerical approach, we found no evidence of a
phase at finite temperatures, and only the paramagnetic
ferromagnetic phases were observed; the results that fo
refer to the critical frontier separating such two phases.
most of the cases, in order to achieve a proper converge
to one of the attractors, 20 RG iterations were enough,
though in some cases, up to 30 RG iterations were neces

FIG. 2. The first moment of the distribution of exchange en
gies after 20 RG iterations, for each single sample, for a typ
point close to the critical frontier~p50.98, kBT/J52.1175!. The
majority of samples~78.75%! presented a convergence to the pa
magnetic attractor, whereas a small fraction of samples~21.25%!
presented a convergence to the ferromagnetic attractor. L
square-root deviations with respect to@sm

(n)#av ,dm
(n) , are observed;

in this case, one finds that the ratiod1
(n)/@s1

(n)#av remains essentially
unchanged~approximately 0.15! for iteration numbersn>15.
8-3



s
t
a
e

w

-
0

re
o

is
r-

ch
t

ed
lin

te
a

ap

e-

the

ed

id-

-

FERNANDO D. NOBRE PHYSICAL REVIEW E64 046108
For a specific sample, a point in the~p, T! plane was consid-
ered inside the paramagnetic~ferromagnetic! phase if, at the
end of the RG process,s1

(n),1023 (s1
(n).10). Let us now

definehP (hF) as the fraction of total number of sample
which, at the end of the RG process, have converged to
paramagnetic~ferromagnetic! attractor. We have associated
point in the~p, T! plane with a specific phase only when th
corresponding fraction of samples, as defined above,
greater than 0.8; this ensures small ratiosdm

(n)/@sm
(n)#av @e.g.,

for the case m51, a point with hF.0.8, presents
d1

(n)/@s1
(n)#av slightly constant forn.15, fixed to a value not

greater than 0.05!. The uncertainties in our critical-point es
timates ~see Table I! correspond to situations where
,hP , hF,0.8.

As mentioned before, the hierarchical lattice conside
reproduces the exact critical temperature of the tw
dimensional ferromagnetic Ising model; in Table I we d
play typical values of critical temperatures found for diffe
ent values ofpN,p,1. A good test for the present approa
is to compute the reduced slope of the critical frontier ap
51; considering the exact critical temperature atp51, to-
gether with the data forp50.995 andp50.99 of Table I,
one finds

s5
1

Tc~1!

dTc~p!

dp U
p51

53.2360.03, ~8!

which compares rather well with the exact result,s
52&/@ ln(&11)#'3.209@45#.

In order to compute the Nishimori point, we have appli
the above-mentioned RG procedure along the Nishimori
@Eq. ~1!#; our estimate is@see Fig. 3~a!#

pN50.890260.0004,
kBTN

J
50.955760.0018, ~9!

which is in good agreement with the most recent fini
temperature numerical approaches. Indeed, our estim
agrees well with the recent numerical transfer-matrix
proach @29# @pN50.8905(5)#, but is slightly higher than
those obtained through series expansions@21# @pN
50.886(3)# and Monte Carlo analysis of nonequilibrium r
laxation @27# @pN50.8872(8)#.

TABLE I. Estimated critical temperatures of the two
dimensional6J Ising spin glass for several values ofp, above the
Nishimori point.

p kBTc(p)/J

0.995 2.231860.0005
0.990 2.194160.0008
0.980 2.116560.0011
0.970 2.036760.0015
0.950 1.867460.0020
0.930 1.679060.0025
0.910 1.450060.0035
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FIG. 3. The fraction of the total number of samples which, at
end of the RG process, have converged to a paramagnetic (hP) or
ferromagnetic (hF) attractor, as function ofp. The critical points
are defined byhP5hF and our uncertainty regions were consider
for 0,hP , hF,0.8.~a! Along the Nishimori line~estimated Nishi-
mori point:pN50.890260.0004!; ~b! TemperaturekBT/J50.5 ~es-
timated p50.891960.0004!; ~c! Zero temperature~estimatedpc

50.895160.0003!. In all cases above, 20 iterations were cons
ered in the RG process.
8-4
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PHASE DIAGRAM OF THE TWO-DIMENSIONAL6J ISING SPIN GLASS PHYSICAL REVIEW E 64 046108
Let us now turn to the critical frontier for temperatur
lower thanTN . In Fig. 3 one clearly sees that the fractions
sampleshP and hF indicate a critical frontier bending to
wards values ofp greater thanpN . In Fig. 3~a! one hashP
andhF along the Nishimori line, in the neighborhood of th
Nishimori point, leading to the estimate of Eq.~9!. In Fig.
3~b! one has such fractions forkBT/J50.5, yielding ~p
50.891960.0004,kBTc /J50.5!. From Fig. 3~c! one gets
the critical point at zero temperature,

pc50.895160.0003. ~10!

The above result agrees well with a recent finite-size sca
analysis of exact ground states@24#, which obtain pc
50.896(1) orpc50.894(2), depending on the type of sca
ing employed. Indeed, the result of Eq.~10! lies in between
such two estimates.

We have found thatpc.pN , i.e., a small reentrance i
observed below the Nishimori point. In order to illustrate th
effect more clearly, in Fig. 4 we exhibit the sample-t
sample fluctuations ofs1

(20) for a conveniently chosen valu
of p (p50.892), at three different temperatures. Along t
Nishimori line most of the samples have converged to
ferromagnetic attractor, forkBT/J50.5 one is clearly very
close to the critical frontier, whereas at zero temperatu
most of the samples have converged to the paramagn
attractor. As far as we know, this is the first time that suc
reentrance has been observed in the present model. Due
small extent, in fact smaller than the error bars in some of
previous numerical investigations, it might have been ind
cernible up to the moment.

The phase diagram, obtained through the present num
cal approach, for the two-dimensional6J Ising SG, is
shown in Fig. 5; for the sake of clarity, we exhibit only th
range 0.7<p<1.0. Since this model holds the symmet

FIG. 4. The first moment of the distribution of exchange en
gies after 20 RG iterations, for each single sample, atp50.892 and
three different temperatures.~a! Along the Nishimori line~squares!;
~b! kBT/J50.5 ~circles!; ~c! Zero temperature~triangles!. For a
better visualization, the samples withs1

(20),1025 were not repre-
sented.
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(p,J)↔(12p,2J), and the present RG approach preserv
antiferromagnetism, one has a symmetric phase diag
with respect to the axisp51/2, with an antiferromagnetic
phase appearing for low values ofp.

It should be pointed out that the present method, altho
being very suitable for investigating critical frontiers, is n
appropriate for studying the critical exponents of the mo
considered herein. Under successive RG iterations, the
pling probability distribution changes rapidly, leading to
proliferation of delta functions; this certainly yields critica
exponents that are very different from the true critical exp
nents of the6J Ising spin glass on a square lattice.

Finally, we have studied the6J Ising spin glass on a
hierarchical lattice that approaches the square lattice
renormalization-group method is employed, and the evo
tion of the probability distribution associated with the co
pling constants is analyzed numerically. Within such a p
cedure, one is able to obtain a precise paramagne
ferromagnetic critical frontier, improving the accuracy wi
respect to previous investigations. A small reentrance is
served in the critical frontier for temperatures below t
Nishimori point. There is always a possibility that such
reentrance may be a peculiarity of the particular hierarch
lattice investigated. However, taking into account the ac
racy of the results, either nearp51 or the good agreement o
the location of the Nishimori point, as well as the zer
temperature critical point, with the most recent numeri
investigations, it is very probable that the reentrance fou
herein is also present in the6J Ising spin glass on a squar
lattice. Further numerical investigations of this model on
square lattice are necessary to clarify this issue.
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FIG. 5. The phase diagram of the two-dimensional6J Ising
spin glass, as obtained by the present approach. Only two ph
are present, namely, the paramagnetic~P! and the ferromagnetic~F!
ones. The dashed line represents the Nishimori line@Eq. ~1!# and
the black circle denotes the Nishimori point.
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